Gesture Unit Segmentation Using Spatial-Temporal Information and Machine Learning

نویسندگان

  • Priscilla Koch Wagner
  • Sarajane Marques Peres
  • Renata C. B. Madeo
  • Clodoaldo Ap. M. Lima
  • Fernando de Almeida Freitas
چکیده

Currently, automated gesture analysis is being widely used in different research areas, such as humancomputer interaction or human-behavior analysis. With regard to the latter area in particular, gesture analysis is closely related to studies on human communication. Linguists and psycholinguists analyze gestures from several standpoints, and one of them is the analysis of gesture segments. The aim of this paper is to outline an approach to automate gesture unit segmentation, as a way of assisting linguistic studies. This objective was attained by employing a Machine Learning technique with the aid of a spatial-temporal data representation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gesture Modeling and Recognition Using Finite State Machines

This paper proposes a state based approach to gesture learning and recognition. Using spatial clustering and temporal alignment, each gesture is defined to be an ordered sequence of states in spatial-temporal space. The 2D image positions of the centers of the head and both hands of the user are used as features; these are located by a color based tracking method. From training data of a given ...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Constructing Finite State Machines for Fast Gesture Recognition

This paper proposes an approach to 2D gesture recognition that models each gesture as a Finite State Machine (FSM) in spatial-temporal space. The model construction works in a semi-automatic way. The structure of the model is first manually decided based on the observation of the spatial topology of the data. The model is refined iteratively between two stages: data segmentation and model train...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Learning Shared, Discriminative Dictionaries for Surgical Gesture Segmentation and Classification

We propose a surgical gesture segmentation and classification method based on shared, discriminative, sparse dictionary learning, which can be used to effectively analyze complex surgical gestures recorded by the da Vinci robotic surgical system. Rather than learning a separate dictionary for each gesture in an unsupervised manner, we propose an algorithm for jointly learning a common overcompl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014